Polycrystalline Silicon ISFETs on Glass Substrate

نویسندگان

  • Feng Yan
  • Pedro Estrela
  • Yang Mo
  • Piero Migliorato
  • Hiroshi Maeda
چکیده

The Ion Sensitive Field Effect Transistor (ISFET) operation based on polycrystalline silicon thin film transistors is reported. These devices can be fabricated on inexpensive disposable substrates such as glass or plastics and are, therefore, promising candidates for low cost single-use intelligent multisensors. In this work we have developed an extended gate structure with PE-CVD Si3N4 deposited on top of a conductor, which also provides the electrical connection to the remote TFT gate. Nearly ideal pH sensitivity (54 mV/pH) and stable operation have been achieved. Temperature effects have also been characterized. A penicillin sensor has been fabricated by functionalizing the sensing area with penicillinase. The shift increases almost linearly upon the increase of penicillin concentration until saturation is reached for ~ 7 mM. Poly-Si TFT structures with a gold sensing area have been also successfully applied to field-effect detection of DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

متن کامل

Design of Analog Circuits on Glass Substrate

In the near future, the liquid crystal display (LCD) fabricated in the low-temperature poly-silicon (LTPS) process is promising toward system-on-panel (SOP) or system-on-glass (SOG) applications, especially for achieving a compact, low-cost, and low-power display system. Therefore, it has a tendency towards integrating digital and analog circuits on the glass substrate. In this paper, an on-gla...

متن کامل

The Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering

The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...

متن کامل

Design and Implementation of Readout Circuit with Threshold Voltage Compensation on Glass Substrate for Touch Panel Applications

A new on-panel readout circuit with threshold voltage compensation for capacitive sensor in low temperature polycrystalline silicon (poly-Si) thinfilm transistor (LTPS-TFT) process has been proposed. In order to compensate the threshold voltage variation from LTPS process variation, the proposed readout circuit applies a novel compensation approach with switch capacitor technique. In addition, ...

متن کامل

Biologically sensitive field-effect transistors: from ISFETs to NanoFETs

Biologically sensitive field-effect transistors (BioFETs) are one of the most abundant classes of electronic sensors for biomolecular detection. Most of the time these sensors are realized as classical ion-sensitive field-effect transistors (ISFETs) having non-metallized gate dielectrics facing an electrolyte solution. In ISFETs, a semiconductor material is used as the active transducer element...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2005